Ad
related to: entropy formula in information theory economics definition
Search results
Results From The WOW.Com Content Network
An equivalent definition of entropy is the expected value of the self-information of a variable. [1] Two bits of entropy: In the case of two fair coin tosses, the information entropy in bits is the base-2 logarithm of the number of possible outcomes — with two coins there are four possible outcomes, and two bits of entropy. Generally ...
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
For an open thermodynamic system in which heat and work are transferred by paths separate from the paths for transfer of matter, using this generic balance equation, with respect to the rate of change with time of the extensive quantity entropy , the entropy balance equation is: [53] [54] [note 1] = = ˙ ^ + ˙ + ˙ where = ˙ ^ is the net rate ...
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .
In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...
The mathematical theory of information is based on probability theory and statistics, and measures information with several quantities of information. The choice of logarithmic base in the following formulae determines the unit of information entropy that is used.
The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, in the context of precisely stated prior data (such as a proposition that expresses testable information).
The generalized entropy index has been proposed as a measure of income inequality in a population. [1] It is derived from information theory as a measure of redundancy in data. In information theory a measure of redundancy can be interpreted as non-randomness or data compression ; thus this interpretation also applies to this index.