Search results
Results From The WOW.Com Content Network
Bitwise XOR of 4-bit integers. A bitwise XOR is a binary operation that takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of corresponding bits. The result in each position is 1 if only one of the bits is 1, but will be 0 if both are 0 or both are 1.
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
In cryptography, the simple XOR cipher is a type of additive cipher, [1] an encryption algorithm that operates according to the principles: A ⊕ {\displaystyle \oplus } 0 = A, A ⊕ {\displaystyle \oplus } A = 0,
Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and possibly other operations analogous to the boolean operators; there are also bit shifts and operations to count ones and zeros, find high and low one or zero, set, reset and test bits, extract and insert fields, mask and zero fields, gather and ...
Therefore inversion of the values of bits is done by XORing them with a 1. If the original bit was 1, it returns 1 XOR 1 = 0. If the original bit was 0 it returns 0 XOR 1 = 1. Also note that XOR masking is bit-safe, meaning that it will not affect unmasked bits because Y XOR 0 = Y, just like an OR. Example: Toggling bit values
The XOR operation preserves randomness, meaning that a random bit XORed with a non-random bit will result in a random bit. Multiple sources of potentially random data can be combined using XOR, and the unpredictability of the output is guaranteed to be at least as good as the best individual source.
Both ciphers are built on a pseudorandom function based on add–rotate–XOR (ARX) operations — 32-bit addition, bitwise addition (XOR) and rotation operations. The core function maps a 256-bit key, a 64-bit nonce, and a 64-bit counter to a 512-bit block of the key stream (a Salsa version with a 128-bit key also exists). This gives Salsa20 ...
The result for that iteration is the bitwise XOR of the polynomial divisor with the bits above it. The bits not above the divisor are simply copied directly below for that step. The divisor is then shifted right to align with the highest remaining 1 bit in the input, and the process is repeated until the divisor reaches the right-hand end of ...