Search results
Results From The WOW.Com Content Network
Tetracyclines are generally used in the treatment of infections of the urinary tract, respiratory tract, and the intestines and are also used in the treatment of chlamydia, especially in patients allergic to β-lactams and macrolides; however, their use for these indications is less popular than it once was due to widespread development of resistance in the causative organisms.
Erythromycin can be used to treat bacteria responsible for causing infections of the skin and upper respiratory tract, including Streptococcus, Staphylococcus, Haemophilus and Corynebacterium genera. The following represents MIC susceptibility data for a few medically significant bacteria: [12] Haemophilus influenzae: 0.015 to 256 μg/ml
β-Lactam antibiotics are indicated for the prevention and treatment of bacterial infections caused by susceptible organisms. At first, β-lactam antibiotics were mainly active only against gram-positive bacteria, yet the recent development of broad-spectrum β-lactam antibiotics active against various gram-negative organisms has increased their usefulness.
Narrow-spectrum antibiotics have low propensity to induce bacterial resistance and are less likely to disrupt the microbiome (normal microflora). [3] On the other hand, indiscriminate use of broad-spectrum antibiotics may not only induce the development of bacterial resistance and promote the emergency of multidrug-resistant organisms, but also cause off-target effects due to dysbiosis.
The following is a list of antibiotics. ... See also pathogenic bacteria for a list of antibiotics sorted by target bacteria. ... But Tetracycline cannot be taken ...
Tetracycline (Tc) is a broad family of antibiotics to which bacteria have evolved resistance. Tc normally kills bacteria by binding to the bacterial ribosome and halting protein synthesis. The expression of Tc resistance genes is regulated by the repressor TetR.
The following antibiotics bind to the 30S subunit of the ribosome: Aminoglycosides [17] Tetracyclines [17] The following antibiotics bind to the 50S ribosomal subunit: Chloramphenicol [17] Clindamycin [17] Linezolid [17] (an oxazolidinone) Macrolides [17] Telithromycin [17] Streptogramins [17] Retapamulin [18]
Diagram depicting antibiotic resistance through alteration of the antibiotic's target site, modeled after MRSA's resistance to penicillin. Beta-lactam antibiotics permanently inactivate PBP enzymes , which are essential for bacterial life, by permanently binding to their active sites.