When.com Web Search

  1. Ads

    related to: lower triangular matrix 3x3 solver free

Search results

  1. Results From The WOW.Com Content Network
  2. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    The transpose of an upper triangular matrix is a lower triangular matrix and vice versa. A matrix which is both symmetric and triangular is diagonal. In a similar vein, a matrix which is both normal (meaning A * A = AA *, where A * is the conjugate transpose) and triangular is also diagonal. This can be seen by looking at the diagonal entries ...

  3. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The product sometimes includes a permutation matrix as well.

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Related: the LDU decomposition is =, where L is lower triangular with ones on the diagonal, U is upper triangular with ones on the diagonal, and D is a diagonal matrix. Related: the LUP decomposition is P A = L U {\displaystyle PA=LU} , where L is lower triangular , U is upper triangular , and P is a permutation matrix .

  6. Incomplete LU factorization - Wikipedia

    en.wikipedia.org/wiki/Incomplete_LU_factorization

    A common choice is to use the sparsity pattern of A 2 instead of A; this matrix is appreciably more dense than A, but still sparse over all. This preconditioner is called ILU(1). One can then generalize this procedure; the ILU(k) preconditioner of a matrix A is the incomplete LU factorization with the sparsity pattern of the matrix A k+1.

  7. Crout matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Crout_matrix_decomposition

    The Crout matrix decomposition algorithm differs slightly from the Doolittle method. Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU

  8. Pascal matrix - Wikipedia

    en.wikipedia.org/wiki/Pascal_matrix

    In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .

  9. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.