When.com Web Search

  1. Ad

    related to: lambda calculus reduction practice worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.

  3. Normalisation by evaluation - Wikipedia

    en.wikipedia.org/wiki/Normalisation_by_evaluation

    Such an essentially semantic, reduction-free, approach differs from the more traditional syntactic, reduction-based, description of normalisation as reductions in a term rewrite system where β-reductions are allowed deep inside λ-terms. NBE was first described for the simply typed lambda calculus. [1]

  4. Natural deduction - Wikipedia

    en.wikipedia.org/wiki/Natural_deduction

    These notions correspond exactly to β-reduction (beta reduction) and η-conversion (eta conversion) in the lambda calculus, using the Curry–Howard isomorphism. By local completeness, we see that every derivation can be converted to an equivalent derivation where the principal connective is introduced.

  5. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.

  6. Church–Rosser theorem - Wikipedia

    en.wikipedia.org/wiki/Church–Rosser_theorem

    Viewing the lambda calculus as an abstract rewriting system, the Church–Rosser theorem states that the reduction rules of the lambda calculus are confluent. As a consequence of the theorem, a term in the lambda calculus has at most one normal form, justifying reference to "the normal form" of a given normalizable term.

  7. Krivine machine - Wikipedia

    en.wikipedia.org/wiki/Krivine_machine

    A head normal form is a term of the lambda calculus which is not a head redex. [a] A head reduction is a (non empty) sequence of contractions of a term which contracts head redexes. A head reduction of a term t (which is supposed not to be in head normal form) is a head reduction which starts from a term t and ends on a head normal form. From ...

  8. Reduction strategy - Wikipedia

    en.wikipedia.org/wiki/Reduction_strategy

    Optimal reduction is not a reduction strategy for the lambda calculus in a narrow sense because performing β-reduction loses the information about the substituted redexes being shared. Instead it is defined for the labelled lambda calculus, an annotated lambda calculus which captures a precise notion of the work that should be shared.

  9. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.