When.com Web Search

  1. Ad

    related to: continuity equation in other coordinates graph calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    Other equations in physics, such as Gauss's law of the electric field and Gauss's law for gravity, have a similar mathematical form to the continuity equation, but are not usually referred to by the term "continuity equation", because j in those cases does not represent the flow of a real physical quantity.

  3. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    The velocity satisfies the continuity equation for incompressible flow: ∇ ⋅ u = 0. {\displaystyle \quad \nabla \cdot \mathbf {u} =0.} Although in principle the stream function doesn't require the use of a particular coordinate system, for convenience the description presented here uses a right-handed Cartesian coordinate system with ...

  4. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  5. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Continuity equations offer more examples of laws with both differential and integral forms, related to each other by the divergence theorem. In fluid dynamics , electromagnetism , quantum mechanics , relativity theory , and a number of other fields, there are continuity equations that describe the conservation of mass, momentum, energy ...

  6. Two-dimensional flow - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_flow

    Sink flow is the opposite of source flow. The streamlines are radial, directed inwards to the line source. As we get closer to the sink, area of flow decreases. In order to satisfy the continuity equation, the streamlines get bunched closer and the velocity increases as we get closer to the source. As with source flow, the velocity at all ...

  7. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  8. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the Navier–Stokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  9. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    The computation of the Hausdorff dimension of the graph of the classical Weierstrass function was an open problem until 2018, while it was generally believed that = + ⁡ <. [6] [7] That D is strictly less than 2 follows from the conditions on and from above. Only after more than 30 years was this proved rigorously.