Search results
Results From The WOW.Com Content Network
Antigen-antibody interaction, or antigen-antibody reaction, is a specific chemical interaction between antibodies produced by B cells of the white blood cells and antigens during immune reaction. The antigens and antibodies combine by a process called agglutination.
Mechanism of class-switch recombination that allows isotype switching in activated B cells. Immunoglobulin class switching, also known as isotype switching, isotypic commutation or class-switch recombination (CSR), is a biological mechanism that changes a B cell's production of immunoglobulin from one type to another, such as from the isotype IgM to the isotype IgG. [1]
The antibody isotype of a B cell changes during cell development and activation. Immature B cells, which have never been exposed to an antigen, express only the IgM isotype in a cell surface bound form. The B lymphocyte, in this ready-to-respond form, is known as a "naive B lymphocyte." The naive B lymphocyte expresses both surface IgM and IgD.
Somatic hypermutation (or SHM) is a cellular mechanism by which the immune system adapts to the new foreign elements that confront it (e.g. microbes).A major component of the process of affinity maturation, SHM diversifies B cell receptors used to recognize foreign elements and allows the immune system to adapt its response to new threats during the lifetime of an organism. [1]
B cells of the immune system perform genetic recombination, called immunoglobulin class switching. It is a biological mechanism that changes an antibody from one class to another, for example, from an isotype called IgM to an isotype called IgG .
B cells, unlike the other two classes of lymphocytes, T cells and natural killer cells, express B cell receptors (BCRs) on their cell membrane. [1] BCRs allow the B cell to bind to a foreign antigen, against which it will initiate an antibody response. [1] B cell receptors are extremely specific, with all BCRs on a B cell recognizing the same ...
A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics. Weak acids and bases undergo reversible reactions. For example, carbonic acid: H 2 CO 3 (l) + H 2 O (l) ⇌ HCO 3 − (aq) + H 3 O + (aq).
In investigation of cell cycle regulation, Jin et al. manipulated cells in order to evaluate the localization of cyclin B in cells with DNA damage. Through combination of DNA damage and nuclear localization of exogenous cyclin B, they were able to determine that cells would divide even with DNA damage if the cyclin B were forced to be expressed ...