Search results
Results From The WOW.Com Content Network
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. The DCT, first proposed by Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression .
Binomial transform; Discrete Fourier transform, DFT Fast Fourier transform, a popular implementation of the DFT; Discrete cosine transform. Modified discrete cosine transform; Discrete Hartley transform; Discrete sine transform; Discrete wavelet transform; Hadamard transform (or, Walsh–Hadamard transform) Fast wavelet transform
For example, one can use the coordinate remapping = (/), where L is a user-specified constant (one could simply use L=1; an optimal choice of L can speed convergence, but is problem-dependent [11]), to transform the semi-infinite integral into:
In addition to spectral analysis of signals, discrete transforms play important role in data compression, signal detection, digital filtering and correlation analysis. [2] The discrete cosine transform (DCT) is the most widely used transform coding compression algorithm in digital media, followed by the discrete wavelet transform (DWT).
By applying Euler's formula (= + ), it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the ...
Thus, the specific case of = = / is known as an odd-time odd-frequency discrete Fourier transform (or O 2 DFT). Such shifted transforms are most often used for symmetric data, to represent different boundary symmetries, and for real-symmetric data they correspond to different forms of the discrete cosine and sine transforms.
The most widely used transform coding technique in this regard is the discrete cosine transform (DCT), [1] [2] proposed by Nasir Ahmed in 1972, [3] [4] and presented by Ahmed with T. Natarajan and K. R. Rao in 1974. [5] This DCT, in the context of the family of discrete cosine transforms, is the DCT-II.
The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This ...