Search results
Results From The WOW.Com Content Network
Some programming languages (or compilers for them) provide a built-in (primitive) or library decimal data type to represent non-repeating decimal fractions like 0.3 and −1.17 without rounding, and to do arithmetic on them.
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.
In the IEEE standard the base is binary, i.e. =, and normalization is used.The IEEE standard stores the sign, exponent, and significand in separate fields of a floating point word, each of which has a fixed width (number of bits).
Decimals between 1 and 2: fixed interval 2 −23 (1+2 −23 is the next largest float after 1) Decimals between 2 and 4: fixed interval 2 −22; Decimals between 4 and 8: fixed interval 2 −21... Decimals between 2 n and 2 n+1: fixed interval 2 n-23... Decimals between 2 22 =4194304 and 2 23 =8388608: fixed interval 2 −1 =0.5
For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex, the ULP is 2×16 −8, or 2 −31. For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single ...
00000000000 2 =000 16 is used to represent a signed zero (if F = 0) and subnormal numbers (if F ≠ 0); and; 11111111111 2 =7ff 16 is used to represent ∞ (if F = 0) and NaNs (if F ≠ 0), where F is the fractional part of the significand. All bit patterns are valid encoding. Except for the above exceptions, the entire double-precision number ...
In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks .
4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures Approximating a large decimal integer using scientific notation: 300999999: 3.01 × 10 8: 3 significant figures