Ad
related to: edge connectivity in graph theory research
Search results
Results From The WOW.Com Content Network
This graph becomes disconnected when the right-most node in the gray area on the left is removed This graph becomes disconnected when the dashed edge is removed.. In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more ...
In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed. The edge-connectivity of a graph is the largest k for which the graph is k-edge-connected. Edge connectivity and the enumeration of k-edge-connected graphs was studied by Camille Jordan in 1869. [1]
Strong connectivity augmentation is a computational problem in the mathematical study of graph algorithms, in which the input is a directed graph and the goal of the problem is to add a small number of edges, or a set of edges with small total weight, so that the added edges make the graph into a strongly connected graph.
In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are:
Grinberg used his theorem to find non-Hamiltonian cubic polyhedral graphs with high cyclic edge connectivity. The cyclic edge connectivity of a graph is the smallest number of edges whose deletion leaves a subgraph with more than one cyclic component. The 46-vertex Tutte graph, and the smaller cubic non-Hamiltonian polyhedral graphs derived from it
In graph theory, Robbins' theorem, named after Herbert Robbins (), states that the graphs that have strong orientations are exactly the 2-edge-connected graphs.That is, it is possible to choose a direction for each edge of an undirected graph G, turning it into a directed graph that has a path from every vertex to every other vertex, if and only if G is connected and has no bridge.
A graph and two of its cuts. The dotted line in red is a cut with three crossing edges. The dashed line in green is a min-cut of this graph, crossing only two edges. In computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first ...
In set theory and graph theory, denotes the set of n-tuples of elements of , that is, ordered sequences of elements that are not necessarily distinct. In the edge ( x , y ) {\displaystyle (x,y)} directed from x {\displaystyle x} to y {\displaystyle y} , the vertices x {\displaystyle x} and y {\displaystyle y} are called the endpoints of the ...