When.com Web Search

  1. Ad

    related to: edge connectivity in graph theory psychology

Search results

  1. Results From The WOW.Com Content Network
  2. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    This graph becomes disconnected when the right-most node in the gray area on the left is removed This graph becomes disconnected when the dashed edge is removed.. In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more ...

  3. k-edge-connected graph - Wikipedia

    en.wikipedia.org/wiki/K-edge-connected_graph

    In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed. The edge-connectivity of a graph is the largest k for which the graph is k-edge-connected. Edge connectivity and the enumeration of k-edge-connected graphs was studied by Camille Jordan in 1869. [1]

  4. Dynamic connectivity - Wikipedia

    en.wikipedia.org/wiki/Dynamic_connectivity

    In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are:

  5. Robbins' theorem - Wikipedia

    en.wikipedia.org/wiki/Robbins'_theorem

    In graph theory, Robbins' theorem, named after Herbert Robbins (), states that the graphs that have strong orientations are exactly the 2-edge-connected graphs.That is, it is possible to choose a direction for each edge of an undirected graph G, turning it into a directed graph that has a path from every vertex to every other vertex, if and only if G is connected and has no bridge.

  6. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    Grinberg used his theorem to find non-Hamiltonian cubic polyhedral graphs with high cyclic edge connectivity. The cyclic edge connectivity of a graph is the smallest number of edges whose deletion leaves a subgraph with more than one cyclic component. The 46-vertex Tutte graph, and the smaller cubic non-Hamiltonian polyhedral graphs derived from it

  7. Betweenness centrality - Wikipedia

    en.wikipedia.org/wiki/Betweenness_centrality

    In graph theory, betweenness centrality is a measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph , there exists at least one shortest path between the vertices, that is, there exists at least one path such that either the number of edges that the path passes through (for unweighted graphs ...

  8. SPQR tree - Wikipedia

    en.wikipedia.org/wiki/SPQR_tree

    Each edge xy between two nodes of the SPQR tree is associated with two directed virtual edges, one of which is an edge in G x and the other of which is an edge in G y. Each edge in a graph G x may be a virtual edge for at most one SPQR tree edge. An SPQR tree T represents a 2-connected graph G T, formed as follows.

  9. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In set theory and graph theory, denotes the set of n-tuples of elements of , that is, ordered sequences of elements that are not necessarily distinct. In the edge ( x , y ) {\displaystyle (x,y)} directed from x {\displaystyle x} to y {\displaystyle y} , the vertices x {\displaystyle x} and y {\displaystyle y} are called the endpoints of the ...