Ads
related to: red shift and blue fluorescence in diamond
Search results
Results From The WOW.Com Content Network
Some natural type IIb diamonds phosphoresce blue after exposure to short-wave ultraviolet. In natural diamonds, fluorescence under X-rays is generally bluish-white, yellowish or greenish. Some diamonds, particularly Canadian diamonds, show no fluorescence. [19] [22] The origin of the luminescence colors is often unclear and not unique.
Of the 35% that did fluoresce, 97% had blue fluorescence of which 38% had faint blue fluorescence and 62% had fluorescence that ranged from medium to very strong blue. Other colors diamonds can fluoresce are green, yellow, and red, but are very rare and are sometimes a combination of the colors such as blue-green or orange. In October 2020, a ...
The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect , and gravitational potentials, which gravitationally redshift escaping ...
The majority of mined diamonds fall between white and pale yellow or brown; what is known as the normal color range. Diamonds of more intense color (usually yellow, but in some cases red, green or blue) are termed fancy color diamonds. Black diamonds are also fancy color diamonds. All other factors being equal, the most valuable diamonds are ...
Rubies, emeralds, and diamonds exhibit red fluorescence under long-wave UV, blue and sometimes green light; diamonds also emit light under X-ray radiation. Fluorescence in minerals is caused by a wide range of activators. In some cases, the concentration of the activator must be restricted to below a certain level, to prevent quenching of the ...
GIA (2007)"A Contribution to the Understanding of Blue Fluorescence on the Appearance of Diamonds". Retrieved July 9, 2008. Retrieved July 9, 2008. About.com By Carly Wickell Diamond Inclusions Archived 2008-05-17 at the Wayback Machine Accessed July 9, 2008.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In spectroscopy, bathochromic shift (from Greek βαθύς (bathys) 'deep' and χρῶμα (chrōma) 'color'; hence less common alternate spelling "bathychromic") is a change of spectral band position in the absorption, reflectance, transmittance, or emission spectrum of a molecule to a longer wavelength (lower frequency). [1]