When.com Web Search

  1. Ad

    related to: global continuity of function calculator with solution

Search results

  1. Results From The WOW.Com Content Network
  2. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  4. Pointwise convergence - Wikipedia

    en.wikipedia.org/wiki/Pointwise_convergence

    The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example, f ( x ) = lim n → ∞ cos ⁡ ( π x ) 2 n {\displaystyle f(x)=\lim _{n\to \infty }\cos(\pi x)^{2n}} takes the value 1 {\displaystyle 1} when x {\displaystyle x} is an integer and 0 {\displaystyle ...

  5. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...

  6. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...

  7. Total variation - Wikipedia

    en.wikipedia.org/wiki/Total_variation

    In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure.For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x ↦ f(x ...

  8. Hemicontinuity - Wikipedia

    en.wikipedia.org/wiki/Hemicontinuity

    A set-valued function that is both upper and lower hemicontinuous is said to be continuous in an analogy to the property of the same name for single-valued functions. To explain both notions, consider a sequence a of points in a domain, and a sequence b of points in the range.

  9. Global optimization - Wikipedia

    en.wikipedia.org/wiki/Global_optimization

    Stochastic tunneling (STUN) is an approach to global optimization based on the Monte Carlo method-sampling of the function to be objectively minimized in which the function is nonlinearly transformed to allow for easier tunneling among regions containing function minima. Easier tunneling allows for faster exploration of sample space and faster ...