Search results
Results From The WOW.Com Content Network
The prior art includes an RF MEMS frequency tunable fractal antenna for the 0.1–6 GHz frequency range, [18] and the actual integration of RF MEMS switches on a self-similar Sierpinski gasket antenna to increase its number of resonant frequencies, extending its range to 8 GHz, 14 GHz and 25 GHz, [19] [20] an RF MEMS radiation pattern ...
An early example of a MEMS device is the resonant-gate transistor, an adaptation of the MOSFET, developed by Robert A. Wickstrom for Harvey C. Nathanson in 1965. [4] Another early example is the resonistor, an electromechanical monolithic resonator patented by Raymond J. Wilfinger between 1966 and 1971.
Of course the various types of oscillators are configured from specialized CMOS and MEMS die. For instance, low power and high performance oscillators are not built with the same die. In addition, high precision oscillators often require more careful calibration than lower precision oscillators. MEMS oscillators are tested much like standard ICs.
This allows fabrication of much smaller structures, albeit often at the cost of limited control of the fabrication process. Furthermore, while there are residue materials removed from the original structure for the top-down approach, minimal material is removed or wasted for the bottom-up approach.
A MEMS magnetic actuator is a device that uses the microelectromechanical systems (MEMS) to convert an electric current into a mechanical output by employing the well-known Lorentz Force Equation or the theory of Magnetism.
Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades, microelectromechanical systems (MEMS), microsystems (European usage), micromachines (Japanese terminology) and their subfields have re ...
Mark G. Allen is a professor specializing in microfabrication, nanotechnology, and microelectromechanical systems at the University of Pennsylvania, where he is currently Alfred Fitler Moore Professor of Electrical and Systems Engineering [1] Director of the Singh Center for Nanotechnology, [2] and leader of the Microsensor and Microactuator Research Group.
The list below provides an overview of companies that develop and fabricate MEMS (microelectromechanical systems) devices. These companies are usually referred to the concept of foundries. The offer of the companies varies according to the used material, the production volume and the size of the wafers used for the fabrication.