Search results
Results From The WOW.Com Content Network
A quasi-experiment is an empirical study used to estimate the causal impact of an intervention. Quasi-experiments shares similarities with experiments or randomized controlled trials, but specifically lack random assignment to treatment or control.
The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [12] by Abraham Wald in the context of sequential tests of statistical hypotheses. [13]
Experimental data in science and engineering is data produced by a measurement, test method, experimental design or quasi-experimental design. In clinical research any data produced are the result of a clinical trial. Experimental data may be qualitative or quantitative, each being appropriate for different investigations.
Analysis of variance (ANOVA): A mathematical process for separating the variability of a group of observations into assignable causes and setting up various significance tests. Balanced design: An experimental design where all cells (i.e. treatment combinations) have the same number of observations.
In statistics, econometrics, political science, epidemiology, and related disciplines, a regression discontinuity design (RDD) is a quasi-experimental pretest–posttest design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned.
Interrupted time series design is the design of experiments based on the interrupted time series approach. The method is used in various areas of research, such as: political science : impact of changes in laws on the behavior of people; [ 2 ] (e.g., Effectiveness of sex offender registration policies in the United States )
The design of a study defines the study type (descriptive, correlational, semi-experimental, experimental, review, meta-analytic) and sub-type (e.g., descriptive-longitudinal case study), research problem, hypotheses, independent and dependent variables, experimental design, and, if applicable, data collection methods and a statistical analysis ...
Field experiments encompass a broad array of experimental designs, each with varying degrees of generality. Some criteria of generality (e.g. authenticity of treatments, participants, contexts, and outcome measures) refer to the contextual similarities between the subjects in the experimental sample and the rest of the population.