Ad
related to: quadrature of parabolic segment theorem examples math
Search results
Results From The WOW.Com Content Network
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.
The quadrature of the circle with compass and straightedge was proved in the 19th century to be impossible. [1] [2] Nevertheless, for some figures a quadrature can be performed. The quadratures of the surface of a sphere and a parabola segment discovered by Archimedes became the highest achievement of analysis in antiquity.
The area bounded by the intersection of a line and a parabola is 4/3 that of the triangle having the same base and height (the quadrature of the parabola); The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes;
The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = x n. Traditionally important cases are y = x 2, the quadrature of the parabola, known in antiquity, and y = 1/x, the quadrature of the hyperbola, whose value is a logarithm.
Suppose the line segment AC is parallel to the axis of symmetry of the parabola. Further suppose that the line segment BC lies on a line that is tangent to the parabola at B. The first proposition states: [1]: 14 The area of the triangle ABC is exactly three times the area bounded by the parabola and the secant line AB. Proof: [1]: 15–18
Nevertheless, for some figures (for example the Lune of Hippocrates) a quadrature can be performed. The quadratures of a sphere surface and a parabola segment done by Archimedes became the highest achievement of the antique analysis. The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere.
Analyst's traveling salesman theorem (discrete mathematics) Analytic Fredholm theorem (functional analysis) Anderson's theorem (real analysis) Andreotti–Frankel theorem (algebraic geometry) Angle bisector theorem (Euclidean geometry) Ankeny–Artin–Chowla theorem (number theory) Anne's theorem ; Apéry's theorem (number theory)
The result is a linear system of three equations, which can be solved by Gaussian elimination or Cramer's rule, for example. An alternative way uses the inscribed angle theorem for parabolas. In the following, the angle of two lines will be measured by the difference of the slopes of the line with respect to the directrix of the parabola.