Ads
related to: load bearing wall beam size
Search results
Results From The WOW.Com Content Network
A load-bearing wall or bearing wall is a wall that is an active structural element of a building — that is, it bears the weight of the elements above said wall, resting upon it by conducting its weight to a foundation structure. [1] The materials most often used to construct load-bearing walls in large buildings are concrete, block, or brick.
Grade beam. A grade beam or grade beam footing is a component of a building's foundation. It consists of a reinforced concrete beam that transmits the load from a bearing wall into spaced foundations such as pile caps or caissons. [1] It is used in conditions where the surface soil's load-bearing capacity is less than the anticipated design loads.
Diagram of double tee beam. A double tee or double-T beam is a load-bearing structure that resembles two T-beams connected to each other side by side. The strong bond of the flange (horizontal section) and the two webs (vertical members, also known as stems) creates a structure that is capable of withstanding high loads while having a long span.
A beam of PSL lumber installed to replace a load-bearing wall. The primary tool for structural analysis of beams is the Euler–Bernoulli beam equation. This equation accurately describes the elastic behaviour of slender beams where the cross sectional dimensions are small compared to the length of the beam.
A double-T beam or double tee beam is a load-bearing structure that resemble two T-beams connected to each other. Double tees are manufactured from prestressed concrete using pretensioning beds of about 200-foot (61 m) to 500-foot (150 m) long. The strong bond of the flange (horizontal section) and the two webs (vertical members) creates a ...
Historically, buildings were constructed of timber, masonry, or a combination of both. Their exterior walls were load-bearing, supporting much or all of the load of the entire structure. The nature of the materials resulted in inherent limits to a building's height and the maximum size of window openings. [citation needed]
Concrete tilt-up walls can be very heavy, sometimes over 300,000 pounds (140 t). [10] Most tilt-up wall panels are engineered to work with the roof structure and/or floor structures to resist all forces; that is, to function as load-bearing walls.
Steel studs are gaining popularity as a non-combustible alternative, especially for non load-bearing walls, and are required in some firewalls. In New Zealand, the required lumber size and spacing of wall studs are determined using NZS 3604 Timber-framed buildings table 8.2 for loadbearing walls and table 8.4 for non-loadbearing walls. [4]