Search results
Results From The WOW.Com Content Network
The duality between covariance and contravariance intervenes whenever a vector or tensor quantity is represented by its components, although modern differential geometry uses more sophisticated index-free methods to represent tensors. In tensor analysis, a covariant vector varies more or less reciprocally to a corresponding contravariant vector ...
An example is the compareTo method: a. compareTo (b) checks whether a comes before or after b in some ordering, but the way to compare, say, two rational numbers will be different from the way to compare two strings. Other common examples of binary methods include equality tests, arithmetic operations, and set operations like subset and union.
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
PCA of a multivariate Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the (0.866, 0.5) direction and of 1 in the orthogonal direction. . The vectors shown are the eigenvectors of the covariance matrix scaled by the square root of the corresponding eigenvalue, and shifted so their tails are at the m
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
The covariance matrix of an random vector is an matrix whose (,) th element is the covariance between the i th and the j th random variables. [ 2 ] : p.372 Unlike in the case of real random variables, the covariance between two random variables involves the complex conjugate of one of the two.
The same C(x, y) is called the autocovariance function in two instances: in time series (to denote exactly the same concept except that x and y refer to locations in time rather than in space), and in multivariate random fields (to refer to the covariance of a variable with itself, as opposed to the cross covariance between two different ...
The covariance is sometimes called a measure of "linear dependence" between the two random variables. That does not mean the same thing as in the context of linear algebra (see linear dependence ). When the covariance is normalized, one obtains the Pearson correlation coefficient , which gives the goodness of the fit for the best possible ...