When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    [9] [10] The magnitude of torque applied to a rigid body depends on three quantities: the force applied, the lever arm vector [11] connecting the point about which the torque is being measured to the point of force application, and the angle between the force and lever arm vectors. In symbols:

  3. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    Both the torque and force exerted on a magnet by an external magnetic field are proportional to that magnet's magnetic moment. The magnetic moment is a vector: it has both a magnitude and direction. The direction of the magnetic moment points from the south to north pole of a magnet (inside the magnet).

  4. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The force on an electric charge depends on its location, speed, and direction; two vector fields are used to describe this force. [2]: ch1 The first is the electric field, which describes the force acting on a stationary charge and gives the component of the force that is independent of motion.

  5. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The work done by a torque acting on an object equals the magnitude of the torque times the angle through which the torque is applied: =. The power of a torque is equal to the work done by the torque per unit time, hence: P = τ ω . {\displaystyle P=\tau \omega .}

  6. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces

  7. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    For now just consider the magnitude of the torque on the pendulum. | τ | = − m g ℓ sin ⁡ θ , {\displaystyle |{\boldsymbol {\tau }}|=-mg\ell \sin \theta ,} where m is the mass of the pendulum, g is the acceleration due to gravity, l is the length of the pendulum, and θ is the angle between the length vector and the force due to gravity.

  8. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.

  9. DC motor - Wikipedia

    en.wikipedia.org/wiki/DC_motor

    Torque is produced by the principle that any current-carrying conductor placed within an external magnetic field experiences a force, known as Lorentz force. In a motor, the magnitude of this Lorentz force (a vector represented by the green arrow), and thus the output torque, is a function for rotor angle, leading to a phenomenon known as ...