When.com Web Search

  1. Ads

    related to: how to solve systems graphically

Search results

  1. Results From The WOW.Com Content Network
  2. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1][2] For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously ...

  3. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel. Though it can be applied to any matrix with non ...

  4. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    Overdetermined system. In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. [1][citation needed] An overdetermined system is almost always inconsistent (it has no solution) when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for ...

  5. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation (iterative method) In numerical mathematics, relaxation methods are iterative methods for solving systems of equations, including nonlinear systems. [1] Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2][3] They are also used for ...

  6. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Systems of linear equations form a fundamental part of linear algebra. Historically, linear algebra and matrix theory has been developed for solving such systems. In the modern presentation of linear algebra through vector spaces and matrices, many problems may be interpreted in terms of linear systems. For example, let

  7. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the ...

  8. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xi s which belong to some algebraically closed field extension K of k ...

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Frequently models of physical systems contain terms representing fast-decaying elements (i.e. with large negative exponential arguments). Even when these are not of interest in the overall solution, the instability they can induce means that an exceptionally small timestep would be required if the Euler method is used.