When.com Web Search

  1. Ad

    related to: calculating chord length

Search results

  1. Results From The WOW.Com Content Network
  2. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]

  3. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    In the design of windows or doors with rounded tops, c and h may be the only known values and can be used to calculate R for the draftsman's compass setting. One can reconstruct the full dimensions of a complete circular object from fragments by measuring the arc length and the chord length of the fragment. To check hole positions on a circular ...

  4. Chord (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Chord_(aeronautics)

    The term chord is also applied to the width of wing flaps, ailerons and rudder on an aircraft. Many wings are not rectangular, so they have different chords at different positions. Usually, the chord length is greatest where the wing joins the aircraft's fuselage (called the root chord) and decreases along the wing toward the wing's tip (the ...

  5. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    The sagitta also has uses in physics where it is used, along with chord length, to calculate the radius of curvature of an accelerated particle. This is used especially in bubble chamber experiments where it is used to determine the momenta of decay particles. Likewise historically the sagitta is also utilised as a parameter in the calculation ...

  6. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  7. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    Fluid dynamicists define the chord Reynolds number R = Vc/ν, where V is the flight speed, c is the chord length, and ν is the kinematic viscosity of the fluid in which the airfoil operates, which is 1.460 × 10 −5 m 2 /s for the atmosphere at sea level. [19]

  8. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...

  9. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...