Ads
related to: human trophoblast stem cells location in the brain diagram labeled
Search results
Results From The WOW.Com Content Network
The trophoblast (from Greek trephein: to feed; and blastos: germinator) is the outer layer of cells of the blastocyst. Trophoblasts are present four days after fertilization in humans. [ 1 ] They provide nutrients to the embryo and develop into a large part of the placenta .
The cytotrophoblast is considered to be the trophoblastic stem cell because the layer surrounding the blastocyst remains while daughter cells differentiate and proliferate to function in multiple roles. There are two lineages that cytotrophoblastic cells may differentiate through: fusion and invasive. The fusion lineage yields ...
Blastocyst with an inner cell mass and trophoblast. Cleavage itself is the first stage in blastulation, the process of forming the blastocyst. Cells differentiate into an outer layer of cells called the trophoblast, and an inner cell mass. With further compaction the individual outer blastomeres, the trophoblasts, become indistinguishable.
Trophoblast cells also secrete factors to make the blastocoel. [25] After implantation, cytotrophoblast is the inner layer of the trophoblast, composed of stem cells which give rise to cells comprising the chorionic villi, placenta, and syncytiotrophoblast. After implantation, syncytiotrophoblast is the outermost layer of the trophoblast.
In all vertebrates, these progenitor cells differentiate into all adult tissues and organs. [5] In the human embryo, after about three days, the zygote forms a solid mass of cells by mitotic division, called a morula. This then changes to a blastocyst, consisting of an outer layer called a trophoblast, and an inner cell mass called the embryoblast.
It harbors the largest population of proliferating cells in the adult brain of rodents, monkeys and humans. [12] In 2010, it was shown that the balance between neural stem cells and neural progenitor cells (NPCs) is maintained by an interaction between the epidermal growth factor receptor signaling pathway and the Notch signaling pathway. [13]
Pluripotent stem cells are the starting point to produce organ specific cells that can potentially aid in repair and prevention of injury and degeneration. Combining the expression of transcription factors and locational positioning of the blastula cells can lead to the development of induced functional organs and tissues. Pluripotent Xenopus ...
The human brain is primarily composed of neurons, glial cells, neural stem cells, and blood vessels. Types of neuron include interneurons, pyramidal cells including Betz cells, motor neurons (upper and lower motor neurons), and cerebellar Purkinje cells. Betz cells are the largest cells (by size of cell body) in the nervous system. [40]