Search results
Results From The WOW.Com Content Network
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
Completing the square can be used to derive a general formula for solving quadratic equations, called the quadratic formula. [9] The mathematical proof will now be briefly summarized. [ 10 ] It can easily be seen, by polynomial expansion , that the following equation is equivalent to the quadratic equation: ( x + b 2 a ) 2 = b 2 − 4 a c 4 a 2 ...
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
Completing the square is the oldest method of solving general quadratic equations, used in Old Babylonian clay tablets dating from 1800–1600 BCE, and is still taught in elementary algebra courses today.
Polynomial equations of degree up to four can be solved exactly using algebraic methods, of which the quadratic formula is the simplest example. Polynomial equations with a degree of five or higher require in general numerical methods (see below) or special functions such as Bring radicals , although some specific cases may be solvable ...
All quadratic equations have exactly two solutions in complex numbers (but they may be equal to each other), a category that includes real numbers, imaginary numbers, and sums of real and imaginary numbers. Complex numbers first arise in the teaching of quadratic equations and the quadratic formula. For example, the quadratic equation
The chakravala method (Sanskrit: चक्रवाल विधि) is a cyclic algorithm to solve indeterminate quadratic equations, including Pell's equation.It is commonly attributed to Bhāskara II, (c. 1114 – 1185 CE) [1] [2] although some attribute it to Jayadeva (c. 950 ~ 1000 CE). [3]
If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros (or roots) of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve ...