Search results
Results From The WOW.Com Content Network
Survival analysis includes Cox regression (Proportional hazards model) and Kaplan–Meier survival analysis. Procedures for method evaluation and method comparison include ROC curve analysis, [6] Bland–Altman plot, [7] as well as Deming and Passing–Bablok regression. [8]
An example of a Kaplan–Meier plot for two conditions associated with patient survival. The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a ...
S(t) is theoretically a smooth curve, but it is usually estimated using the Kaplan–Meier (KM) curve. The graph shows the KM plot for the aml data and can be interpreted as follows: The x axis is time, from zero (when observation began) to the last observed time point. The y axis is the proportion of subjects surviving. At time zero, 100% of ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Kaplan-Meier_curve&oldid=301564058"
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
Kaplan–Meier estimator [ edit ] The Dvoretzky–Kiefer–Wolfowitz inequality is obtained for the Kaplan–Meier estimator which is a right-censored data analog of the empirical distribution function
Experimental designs are evaluated using statistical criteria. [6]It is known that the least squares estimator minimizes the variance of mean-unbiased estimators (under the conditions of the Gauss–Markov theorem).