Ad
related to: kaplan meier estimate of reliability and risk
Search results
Results From The WOW.Com Content Network
The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
Kaplan–Meier graph by treatment group in aml. The null hypothesis for a log-rank test is that the groups have the same survival. The expected number of subjects surviving at each time point in each is adjusted for the number of subjects at risk in the groups at each event time.
The assumption of constant hazard may not be appropriate. For example, among most living organisms, the risk of death is greater in old age than in middle age – that is, the hazard rate increases with time. For some diseases, such as breast cancer, the risk of recurrence is lower after 5 years – that is, the hazard rate decreases with time.
As a counterpart of the Kaplan–Meier curve, which is used to describe the time to a terminal event, recurrent event data can be described using the mean cumulative function, which is the average number of cumulative events experienced by an individual in the study at each point in time since the start of follow-up.
The problem with measuring overall survival by using the Kaplan-Meier or actuarial survival methods is that the estimates include two causes of death: deaths from the disease of interest and deaths from all other causes, which includes old age, other cancers, trauma and any other possible cause of death. In general, survival analysis is ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
Kaplan-Meier curve illustrating overall survival based on volume of brain metastases.Elaimy et al. (2011) [6] In its simplest form, the hazard ratio can be interpreted as the chance of an event occurring in the treatment arm divided by the chance of the event occurring in the control arm, or vice versa, of a study.
In full generality, the accelerated failure time model can be specified as [2] (|) = ()where denotes the joint effect of covariates, typically = ([+ +]). (Specifying the regression coefficients with a negative sign implies that high values of the covariates increase the survival time, but this is merely a sign convention; without a negative sign, they increase the hazard.)