Search results
Results From The WOW.Com Content Network
The sample odds ratio n 11 n 00 / n 10 n 01 is easy to calculate, and for moderate and large samples performs well as an estimator of the population odds ratio. When one or more of the cells in the contingency table can have a small value, the sample odds ratio can be biased and exhibit high variance .
Pre-test probability: For example, if about 2 out of every 5 patients with abdominal distension have ascites, then the pretest probability is 40%. Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites.
Diagnostic odds ratios less than one indicate that the test can be improved by simply inverting the outcome of the test – the test is in the wrong direction, while a diagnostic odds ratio of exactly one means that the test is equally likely to predict a positive outcome whatever the true condition – the test gives no information.
It is possible to do a calculation of likelihood ratios for tests with continuous values or more than two outcomes which is similar to the calculation for dichotomous outcomes. For this purpose, a separate likelihood ratio is calculated for every level of test result and is called interval or stratum specific likelihood ratios. [4]
For a continuous independent variable the odds ratio can be defined as: The image represents an outline of what an odds ratio looks like in writing, through a template in addition to the test score example in the "Example" section of the contents. In simple terms, if we hypothetically get an odds ratio of 2 to 1, we can say...
In short, posterior odds equals prior odds times likelihood ratio. For example, if a medical test has a sensitivity of 90% and a specificity of 91%, then the positive Bayes factor is + = / = % / (% %) =.
The simplest measure of association for a 2 × 2 contingency table is the odds ratio. Given two events, A and B, the odds ratio is defined as the ratio of the odds of A in the presence of B and the odds of A in the absence of B, or equivalently (due to symmetry), the ratio of the odds of B in the presence of A and the odds of B in the absence of A.
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...