Ads
related to: multispectral imaging vs hyperspectral
Search results
Results From The WOW.Com Content Network
Multispectral imaging has also found use in document and painting analysis. [3] [4] Multispectral imaging measures light in a small number (typically 3 to 15) of spectral bands. Hyperspectral imaging is a special case of spectral imaging where often hundreds of contiguous spectral bands are available. [5]
Two-dimensional projection of a hyperspectral cube. Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. [1] The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes.
Subcategories of multispectral remote sensing include hyperspectral, in which hundreds of bands are collected and analyzed, and ultraspectral remote sensing where many hundreds of bands are used (Logicon, 1997). The main purpose of multispectral imaging is the potential to classify the image using multispectral classification.
In hyperspectral imaging, a complete spectrum or some spectral information (such as the Doppler shift or Zeeman splitting of a spectral line) is collected at every pixel in an image plane. A hyperspectral camera uses special hardware to capture hundreds of wavelength bands for each pixel, which can be interpreted as a complete spectrum.
A figure illustrating the differences between multi-and hyperspectral imaging. A hyperspectral sensor collects spectral data in a continuous spectrum whereas a multispectral sensor collects spectral data in varying bandwidths in the EM spectrum. In modern times, multi-and hyperspectral imaging sensors are mainly
In imaging spectroscopy (also hyperspectral imaging or spectral imaging) each pixel of an image acquires many bands of light intensity data from the spectrum, instead of just the three bands of the RGB color model. More precisely, it is the simultaneous acquisition of spatially coregistered images in many spectrally contiguous bands.
Hyperspectral imaging from aircraft or satellites can provide remotely sensed reflectance spectra to help detect such graves. Imaging of an experimental mass grave and a real-world mass grave show that hyperspectral remote imaging is a powerful method for finding mass graves in real time, or, in some cases, retrospectively. [26]
Hyperspectral imaging produces an image where each pixel has full spectral information with imaging narrow spectral bands over a contiguous spectral range. Hyperspectral imagers are used in various applications including mineralogy, biology, defence, and environmental measurements.