Search results
Results From The WOW.Com Content Network
The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.
strictfp is an obsolete and redundant reserved word in the Java programming language. [1] [2] Previously, this keyword was used as a modifier that restricted floating-point calculations to IEEE 754 semantics to ensure portability.
float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address. This is not accessible from the Java programming language and is usually left out. [13] [14]
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
Value types do not support subtyping, but may support other forms of implicit type conversion, e.g. automatically converting an integer to a floating-point number if needed. Additionally, there may be implicit conversions between certain value and reference types, e.g. "boxing" a primitive int (a value type) into an Integer object (an object ...
Languages that support a complex data type usually provide special syntax for building such values, and extend the basic arithmetic operations ('+', '−', '×', '÷') to act on them. These operations are usually translated by the compiler into a sequence of floating-point machine instructions or into library calls. Those languages may also ...
The advantage of decimal floating-point representation over decimal fixed-point and integer representation is that it supports a much wider range of values. For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point ...
In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.