When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pi bond - Wikipedia

    en.wikipedia.org/wiki/Pi_bond

    A typical triple bond, for example in acetylene (HC≡CH), consists of one sigma bond and two pi bonds in two mutually perpendicular planes containing the bond axis. Two pi bonds are the maximum that can exist between a given pair of atoms. Quadruple bonds are extremely rare and can be formed only between transition metal atoms, and consist of ...

  3. Single bond - Wikipedia

    en.wikipedia.org/wiki/Single_bond

    The structure of pi bonds does not allow for rotation (at least not at 298 K), so the double bond and the triple bond which contain pi bonds are held due to this property. The sigma bond is not so restrictive, and the single bond is able to rotate using the sigma bond as the axis of rotation (Moore, Stanitski, and Jurs 396-397). Another ...

  4. Rotamer - Wikipedia

    en.wikipedia.org/wiki/Rotamer

    In chemistry, rotamers are chemical species that differ from one another primarily due to rotations about one or more single bonds. Various arrangements of atoms in a molecule that differ by rotation about single bonds can also be referred to as different conformations. Conformers/rotamers differ little in their energies, so they are almost ...

  5. Pi-stacking - Wikipedia

    en.wikipedia.org/wiki/Pi-stacking

    As in previous models, the relative strength of pi stacking interactions was measured by NMR as the rate of rotation about the biaryl bond, as pi stacking interactions are disrupted in the transition state. Para-substituted rings had small rotational barriers which increased with increasingly electron-withdrawing groups, consistent with prior ...

  6. Rotational partition function - Wikipedia

    en.wikipedia.org/wiki/Rotational_partition_function

    Rotational energies are quantized. For a diatomic molecule like CO or HCl, or a linear polyatomic molecule like OCS in its ground vibrational state, the allowed rotational energies in the rigid rotor approximation are = = (+) = (+). J is the quantum number for total rotational angular momentum and takes all integer values starting at zero, i.e., =,,, …, = is the rotational constant, and is ...

  7. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    In ethene, the two carbon atoms form a σ bond by overlapping one sp 2 orbital from each carbon atom. The π bond between the carbon atoms perpendicular to the molecular plane is formed by 2p–2p overlap. Each carbon atom forms covalent C–H bonds with two hydrogens by s–sp 2 overlap, all with 120° bond angles. The hydrogen–carbon bonds ...

  8. Bond order - Wikipedia

    en.wikipedia.org/wiki/Bond_order

    In molecules which have resonance or nonclassical bonding, bond order may not be an integer.In benzene, the delocalized molecular orbitals contain 6 pi electrons over six carbons, essentially yielding half a pi bond together with the sigma bond for each pair of carbon atoms, giving a calculated bond order of 1.5 (one and a half bond).

  9. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.