When.com Web Search

  1. Ad

    related to: how to calculate prime properties

Search results

  1. Results From The WOW.Com Content Network
  2. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.

  3. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The property of being prime is called primality. A simple but slow method of checking the primality of a given number ... ⁠ than to calculate ...

  4. Prime power - Wikipedia

    en.wikipedia.org/wiki/Prime_power

    In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7 1 , 9 = 3 2 and 64 = 2 6 are prime powers, while 6 = 2 × 3 , 12 = 2 2 × 3 and 36 = 6 2 = 2 2 × 3 2 are not.

  5. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve works by creating a list of all integers up to a desired limit and progressively removing composite numbers (which it directly generates) until only primes are left. This is the most efficient way to obtain a large range of primes; however, to find individual primes, direct primality tests are more efficient [ citation needed ] .

  6. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    The first thousand values of φ(n).The points on the top line represent φ(p) when p is a prime number, which is p − 1. [1]In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n.

  7. Prime ideal - Wikipedia

    en.wikipedia.org/wiki/Prime_ideal

    In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. [1] [2] The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime.

  8. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    This property is the key in the proof of the fundamental theorem of arithmetic. [ note 2 ] It is used to define prime elements , a generalization of prime numbers to arbitrary commutative rings . Euclid's lemma shows that in the integers irreducible elements are also prime elements.

  9. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    The following facts, even the reciprocity laws, are straightforward deductions from the definition of the Jacobi symbol and the corresponding properties of the Legendre symbol. [2] The Jacobi symbol is defined only when the upper argument ("numerator") is an integer and the lower argument ("denominator") is a positive odd integer. 1.