Search results
Results From The WOW.Com Content Network
The SI derived unit of electric potential is the volt (in honor of Alessandro Volta), denoted as V, which is why the electric potential difference between two points in space is known as a voltage. Older units are rarely used today.
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension is the difference in electric potential between two points. [1] [2] In a static electric field, it corresponds to the work needed per unit of charge to move a positive test charge from the first point to the second point.
One volt is defined as the electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points. [2] It can be expressed in terms of SI base units ( m , kg , s , and A ) as
where r is the distance between the point charges q and Q, and q and Q are the charges (not the absolute values of the charges—i.e., an electron would have a negative value of charge when placed in the formula). The following outline of proof states the derivation from the definition of electric potential energy and Coulomb's law to this formula.
The electrostatic potential or voltage between two points is defined as the energy (work) required to move a small positive charge through an electric field between the two points, divided by the size of the charge.
The Volta potential, however, corresponds to a real electric field in the spaces between and around the two metal objects, a field generated by the accumulation of charges at their surfaces. The total charge over each object's surface depends on the capacitance between the two objects, by the relation =, where is the Volta potential. It follows ...
Galvani potential , Volta potential and surface potential in one phase. The corresponding potential differences computed between two phases. In electrochemistry, the Galvani potential (also called Galvani potential difference, or inner potential difference, Δφ, delta phi) is the electric potential difference between two points in the bulk of two phases. [1]
Electrical conductors offer an intuitive example. If a and b are any two points within or at the surface of a given conductor, and given there is no flow of charge being exchanged between the two points, then the potential difference is zero between the two points. Thus, an equipotential would contain both points a and b as they have the same ...