Search results
Results From The WOW.Com Content Network
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube (see capillary action), resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and ...
This capillary action is the "upward movement of water through the vadose zone" (Coduto, 266). [8] Increased water infiltration, such as that caused by heavy rainfall, brings about a reduction in matric suction, following the relationship described by the soil water characteristic curve (SWCC), resulting in a reduction of the soil's shear ...
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis , gravity , mechanical pressure and matrix effects such as capillary action (which is caused by surface tension ).
Capillary rise or fall in a tube. Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.
This occurs between water and glass. Water-based fluids like sap, honey, and milk also have a concave meniscus in glass or other wettable containers. Conversely, a convex meniscus occurs when the adhesion energy is less than half the cohesion energy. Convex menisci occur, for example, between mercury and glass in barometers [1] and thermometers.
Mass flow of liquid water from the roots to the leaves is driven in part by capillary action, but primarily driven by water potential differences. If the water potential in the ambient air is lower than that in the leaf airspace of the stomatal pore, water vapor will travel down the gradient and move from the leaf airspace to the atmosphere.
These bonds are the cause of water's high surface tension [96] and capillary forces. The capillary action refers to the tendency of water to move up a narrow tube against the force of gravity. This property is relied upon by all vascular plants, such as trees. [citation needed] Specific heat capacity of water [97]