Search results
Results From The WOW.Com Content Network
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
The Wharton olefin synthesis or the Wharton reaction is a chemical reaction that involves the reduction of α,β-epoxy ketones using hydrazine to give allylic alcohols. [ 1 ] [ 2 ] [ 3 ] This reaction, introduced in 1961 by P. S. Wharton, is an extension of the Wolff–Kishner reduction .
When derived from hydrazine itself, hydrazones condense with a second equivalent of a carbonyl to give azines: [11] R 2 C=N−NH 2 + R 2 C=O → R 2 C=N−N=CR 2 + H 2 O. Hydrazones are intermediates in the Wolff–Kishner reduction. Hydrazones are reactants in hydrazone iodination, the Shapiro reaction, and the Bamford–Stevens reaction to ...
The Shapiro reaction or tosylhydrazone decomposition is an organic reaction in which a ketone or aldehyde is converted to an alkene through an intermediate hydrazone in the presence of 2 equivalents of organolithium reagent. [1] [2] [3] The reaction was discovered by Robert H. Shapiro in 1967. [4]
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [1] [2] [3] The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2). [4] The Knorr pyrrole synthesis
The Enders SAMP/RAMP hydrazone alkylation begins with the synthesis of the hydrazone from a N,N-dialkylhydrazine and a ketone or aldehyde [14]. The hydrazone is then deprotonated on the α-carbon position by a strong base, such as lithium diisopropylamide (LDA), leading to the formation of a resonance stabilized anion - an azaenolate.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.