When.com Web Search

  1. Ads

    related to: cauchy schwarz inequality calculator calculus problems

Search results

  1. Results From The WOW.Com Content Network
  2. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/CauchySchwarz_inequality

    CauchySchwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the CauchySchwarz inequality:

  3. Cramér–Rao bound - Wikipedia

    en.wikipedia.org/wiki/Cramér–Rao_bound

    The CauchySchwarz inequality shows that ... where the second equality is from elementary calculus. Thus, ...

  4. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the CauchySchwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.

  5. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  6. Lagrange's identity - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity

    Lagrange's identity for complex numbers has been obtained from a straightforward product identity. A derivation for the reals is obviously even more succinct. Since the CauchySchwarz inequality is a particular case of Lagrange's identity, [4] this proof is yet another way to obtain the CS inequality. Higher order terms in the series produce ...

  7. Hilbert C*-module - Wikipedia

    en.wikipedia.org/wiki/Hilbert_C*-module

    The CauchySchwarz inequality implies the inner product is jointly continuous in norm and can therefore be extended to the completion. The action of A {\displaystyle A} on E {\displaystyle E} is continuous: for all x {\displaystyle x} in E {\displaystyle E}