Search results
Results From The WOW.Com Content Network
An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement follows: def fibonacci ( limit ): a , b = 0 , 1 for _ in range ( limit ): yield a a , b = b , a + b for number in fibonacci ( 100 ): # The generator constructs an iterator print ( number )
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
A representative example in Python is: for an item in some_iterable_object : do_something () do_something_else () Where some_iterable_object is either a data collection that supports implicit iteration (like a list of employee's names), or may be an iterator itself.
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
In Raku, a sister language to Perl, for must be used to traverse elements of a list (foreach is not allowed). The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation: >>>