When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:Kruskal diagram of Schwarzschild chart.svg - Wikipedia

    en.wikipedia.org/wiki/File:Kruskal_diagram_of...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...

  3. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.

  4. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    This is just an artifact of how Schwarzschild coordinates are defined; a free-falling particle will only take a finite proper time (time as measured by its own clock) to pass between an outside observer and an event horizon, and if the particle's world line is drawn in the Kruskal–Szekeres diagram this will also only take a finite coordinate ...

  5. File:Schwarzchild-metric.jpg - Wikipedia

    en.wikipedia.org/wiki/File:Schwarzchild-metric.jpg

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more

  6. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    In these coordinates, the horizon is the black hole horizon (nothing can come out). The diagram for u-r coordinates is the same diagram turned upside down and with u and v interchanged on the diagram. In that case the horizon is the white hole horizon, which matter and light can come out of, but nothing can go in.

  7. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    Georges Lemaître was the first to show that this is not a real physical singularity but simply a manifestation of the fact that the static Schwarzschild coordinates cannot be realized with material bodies inside the Schwarzschild radius. Indeed, inside the Schwarzschild radius everything falls towards the centre and it is impossible for a ...

  8. Karl Schwarzschild - Wikipedia

    en.wikipedia.org/wiki/Karl_Schwarzschild

    Karl Schwarzschild (German: [kaʁl ˈʃvaʁtsʃɪlt] ⓘ; 9 October 1873 – 11 May 1916) was a German physicist and astronomer.. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-rotating mass, which he accomplished in 1915, the same year that Einstein first introduced general relativity.

  9. Reissner–Nordström metric - Wikipedia

    en.wikipedia.org/wiki/Reissner–Nordström_metric

    For example, the Schwarzschild radius of the Earth is roughly 9 mm (3/8 inch), whereas a satellite in a geosynchronous orbit has an orbital radius that is roughly four billion times larger, at 42 164 km (26 200 miles). Even at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion.