Search results
Results From The WOW.Com Content Network
For example, some 16-bit CRC schemes swap the bytes of the check value. Omission of the high-order bit of the divisor polynomial: Since the high-order bit is always 1, and since an n-bit CRC must be defined by an (n + 1)-bit divisor which overflows an n-bit register, some writers assume that it is unnecessary to mention the divisor's high-order ...
You will note that the code corresponds to the lsbit-first byte-at-a-time algorithm presented here, and the table is generated using the bit-at-a-time code. Function CRC32 Input: data: Bytes // Array of bytes Output: crc32: UInt32 // 32-bit unsigned CRC-32 value // Initialize CRC-32 to starting value crc32 ← 0xFFFFFFFF
32, 64, or 128 bits see Jenkins hash function: CityHash [4] 32, 64, 128, or 256 bits FarmHash [5] 32, 64 or 128 bits MetroHash [6] 64 or 128 bits numeric hash (nhash) [7] variable division/modulo xxHash [8] 32, 64 or 128 bits product/rotation t1ha (Fast Positive Hash) [9] 64 or 128 bits product/rotation/XOR/add GxHash [10] 32, 64 or 128 bits ...
If a CRC-protected message () has a zero bit appended, the received polynomial is (). If the former is divisible by the generator polynomial, so is the latter. Using a non-zero remainder S ( x ) {\displaystyle S(x)} , appending a zero bit will result in the different remainder S ( x ) ⋅ x mod G ( x ) {\displaystyle S(x)\cdot x{\bmod {G}}(x ...
When the data word is divided into 32-bit blocks, two 32-bit sums result and are combined into a 64-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then ...
The effect of a checksum algorithm that yields an n-bit checksum is to map each m-bit message to a corner of a larger hypercube, with dimension m + n. The 2 m + n corners of this hypercube represent all possible received messages. The valid received messages (those that have the correct checksum) comprise a smaller set, with only 2 m corners.
A redundant bit may be a complicated function of many original information bits. The original information may or may not appear literally in the encoded output; codes that include the unmodified input in the output are systematic , while those that do not are non-systematic .
A parity bit is a bit that is added to a group of source bits to ensure that the number of set bits (i.e., bits with value 1) in the outcome is even or odd. It is a very simple scheme that can be used to detect single or any other odd number (i.e., three, five, etc.) of errors in the output.