When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. ATP hydrolysis - Wikipedia

    en.wikipedia.org/wiki/ATP_hydrolysis

    By relating Q to ΔG using the equation ΔG = Δ r G o + RT ln(Q), where Δ r G o is the standard change in Gibbs free energy for the hydrolysis of ATP, it is found that the magnitude of ΔG is much greater than the standard value. The nonstandard conditions of the cell actually result in a more favorable reaction. [7]

  3. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  4. Free-energy relationship - Wikipedia

    en.wikipedia.org/wiki/Free-energy_relationship

    The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]

  5. Standard Gibbs free energy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_Gibbs_free_energy...

    The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).

  6. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    An equilibrium constant is related to the standard Gibbs free energy change of reaction by Δ G ⊖ = − R T ln ⁡ K ⊖ , {\displaystyle \Delta G^{\ominus }=-RT\ln K^{\ominus },} where R is the universal gas constant , T is the absolute temperature (in kelvins ), and ln is the natural logarithm .

  7. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant. This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.

  8. Chemical thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Chemical_thermodynamics

    Some, perhaps most, of the Gibbs free energy of reaction may be delivered as external work. The hydrolysis of ATP to ADP and phosphate can drive the force -times- distance work delivered by living muscles , and synthesis of ATP is in turn driven by a redox chain in mitochondria and chloroplasts , which involves the transport of ions across the ...

  9. Stability constants of complexes - Wikipedia

    en.wikipedia.org/wiki/Stability_constants_of...

    An equilibrium constant is related to the standard Gibbs free energy change for the reaction = ⁡ R is the gas constant and T is the absolute temperature. At 25 °C, ΔG ⊖ = (−5.708 kJ mol −1) ⋅ log β. Free energy is made up of an enthalpy term and an entropy term.