When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    These last three equations can be used as the starting point for the derivation of an equation of motion in General Relativity, instead of assuming that acceleration is zero in free fall. [2] Because the Minkowski tensor is involved here, it becomes necessary to introduce something called the metric tensor in General Relativity.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...

  6. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    When converted to an equivalent system of three ordinary first-order non-linear differential equations, jerk equations are the minimal setting for solutions showing chaotic behaviour. This condition generates mathematical interest in jerk systems. Systems involving fourth-order derivatives or higher are accordingly called hyperjerk systems. [1]

  7. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration, their motion

  8. Four-force - Wikipedia

    en.wikipedia.org/wiki/Four-force

    The second term in the above equation, plays the role of a gravitational force. If f f α {\displaystyle f_{f}^{\alpha }} is the correct expression for force in a freely falling frame ξ α {\displaystyle \xi ^{\alpha }} , we can use then the equivalence principle to write the four-force in an arbitrary coordinate x μ {\displaystyle x^{\mu }} :

  9. Symplectic integrator - Wikipedia

    en.wikipedia.org/wiki/Symplectic_integrator

    Symplectic integrators are designed for the numerical solution of Hamilton's equations, which read ˙ = and ˙ =, where denotes the position coordinates, the momentum coordinates, and is the Hamiltonian.