When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Template:Solar radius calculator - Wikipedia

    en.wikipedia.org/wiki/Template:Solar_radius...

    All radii, once calculated, are divided by 6.957 × 10 8 to convert from m to R ☉.. AD radius determined from angular diameter and distance =, (/) =, = D is multiplied by 3.0857 × 10 19 to convert from kpc to m

  3. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...

  4. Template:Solar radius calculator/doc - Wikipedia

    en.wikipedia.org/wiki/Template:Solar_radius...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  5. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  6. Angular distance - Wikipedia

    en.wikipedia.org/wiki/Angular_distance

    When the rays are lines of sight from an observer to two points in space, it is known as the apparent distance or apparent separation. Angular distance appears in mathematics (in particular geometry and trigonometry) and all natural sciences (e.g., kinematics, astronomy, and geophysics).

  7. Menger curvature - Wikipedia

    en.wikipedia.org/wiki/Menger_curvature

    Let x, y and z be three points in R n; for simplicity, assume for the moment that all three points are distinct and do not lie on a single straight line. Let Π ⊆ R n be the Euclidean plane spanned by x, y and z and let C ⊆ Π be the unique Euclidean circle in Π that passes through x, y and z (the circumcircle of x, y and z). Let R be the ...

  8. Smallest-circle problem - Wikipedia

    en.wikipedia.org/wiki/Smallest-circle_problem

    The recursion terminates when P is empty, and a solution can be found from the points in R: for 0 or 1 points the solution is trivial, for 2 points the minimal circle has its center at the midpoint between the two points, and for 3 points the circle is the circumcircle of the triangle described by the points.

  9. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    Bases: the two parallel and congruent circles of the bases; [4] Axis: the line determined by the two points of the centers of the cylinder's bases; [1] Height: the distance between the two planes of the cylinder's bases; [2] Generatrices: the line segments parallel to the axis and that have ends at the points of the bases' circles. [2]