Search results
Results From The WOW.Com Content Network
The z-test for comparing two proportions is a statistical method used to evaluate whether the proportion of a certain characteristic differs significantly between two independent samples. This test leverages the property that the sample proportions (which is the average of observations coming from a Bernoulli distribution ) are asymptotically ...
if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient; A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
In statistics, the sample maximum and sample minimum, also called the largest observation and smallest observation, are the values of the greatest and least elements of a sample. [1] They are basic summary statistics, used in descriptive statistics such as the five-number summary and Bowley's seven-figure summary and the associated box plot.
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features of a collection of information, [27] while descriptive statistics in the mass noun sense is the process of using and analyzing those statistics.
In hypothesis testing, the primary objective of statistical calculations is to obtain a p-value, the probability of seeing an obtained result, or a more extreme result, when assuming the null hypothesis is true. If the p-value is low (usually < 0.05), the statistical practitioner is then encouraged to reject the null hypothesis.
Fisher's z-distribution is the statistical distribution of half the logarithm of an F-distribution variate: = It was first described by Ronald Fisher in a paper delivered at the International Mathematical Congress of 1924 in Toronto. [1] Nowadays one usually uses the F-distribution instead.