Search results
Results From The WOW.Com Content Network
The term plasmid was coined in 1952 by the American molecular biologist Joshua Lederberg to refer to "any extrachromosomal hereditary determinant." [11] [12] The term's early usage included any bacterial genetic material that exists extrachromosomally for at least part of its replication cycle, but because that description includes bacterial viruses, the notion of plasmid was refined over time ...
Plasmid vectors minimalistically consist of an origin of replication that allows for semi-independent replication of the plasmid in the host. Plasmids are found widely in many bacteria, for example in Escherichia coli, but may also be found in a few eukaryotes, for example in yeast such as Saccharomyces cerevisiae. [8]
An example of a plasmid cloning vector which modifies the inserted protein is pFUSE-Fc plasmid. In order to genetically engineer insulin, the first step is to cut the MCS in the plasmid being used. [7] Once the MCS is cut, the gene for human insulin can be added making the plasmid genetically modified.
Other cloning vectors include the pUC series of plasmids, and a large number of different cloning plasmid vectors are available. Many plasmids have high copy numbers, for example, pUC19 has a copy number of 500-700 copies per cell, [6] and high copy number is useful as it produces greater yield of recombinant plasmid for subsequent manipulation ...
An example of a bacterial expression vector is the pGEX-3x plasmid. The expression host of choice for the expression of many proteins is Escherichia coli as the production of heterologous protein in E. coli is relatively simple and convenient, as well as being rapid and cheap.
A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid (or F-plasmid), used for transforming and cloning in bacteria, usually E. coli. [1] [2] [3] F-plasmids play a crucial role because they contain partition genes that promote the even distribution of plasmids after bacterial cell division.
The plasmid therefore requires a selectable marker such that those cells without the plasmid may be killed or have their growth arrested. Antibiotic resistance is the most commonly used marker for prokaryotes. The transforming plasmid contains a gene that confers resistance to an antibiotic that the bacteria are otherwise sensitive to.
Fitness of a plasmid is determined by its mobility. The first factor of plasmid fitness is its ability to replicate DNA. The second fitness factor is a plasmid's ability to horizontally transfer. Plasmids during their cycle carry genes from one organism to another through a process called conjugation. Plasmids usually contain a set of mobility ...