When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...

  3. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Bartle [9] refers to this as a deleted limit, because it excludes the value of f at p. The corresponding non-deleted limit does depend on the value of f at p, if p is in the domain of f. Let : be a real-valued function. The non-deleted limit of f, as x approaches p, is L if

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions

  5. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance lim x → 0 1 / x 2 = ∞ , {\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered ...

  6. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  7. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    Viète's formula may be rewritten and understood as a limit expression [3] = =, where = = +. For each choice of n {\displaystyle n} , the expression in the limit is a finite product, and as n {\displaystyle n} gets arbitrarily large, these finite products have values that approach the value of Viète's formula arbitrarily closely.

  8. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well.

  9. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    This formula can be very useful in determining the residues for low-order poles. For higher-order poles, the calculations can become unmanageable, and series expansion is usually easier. For essential singularities, no such simple formula exists, and residues must usually be taken directly from series expansions.