Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [ 2 ] and later by Fritz Schlotterbeck in 1907. [ 3 ]
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
An aldol condensation is a condensation reaction in organic chemistry in which two carbonyl moieties (of aldehydes or ketones) react to form a β-hydroxyaldehyde or β-hydroxyketone (an aldol reaction), and this is then followed by dehydration to give a conjugated enone. The overall reaction equation is as follows (where the Rs can be H)
In an aldol condensation, water is subsequently eliminated and an α,β-unsaturated carbonyl is formed. The aldol cleavage or Retro-aldol reaction is the reverse reaction into the starting compounds. The name aldehyde-alcohol reaction derives from the reaction product in the case of a reaction among aldehydes, a β-hydroxy aldehyde.
The reaction was discovered by Teruaki Mukaiyama in 1973. [2] His choice of reactants allows for a crossed aldol reaction between an aldehyde and a ketone (>C=O), or a different aldehyde without self-condensation of the aldehyde. For this reason the reaction is used extensively in organic synthesis.
The ultimate effect is simple extraction of the carbonyl unit from the carbon chain. The rate and yield of this product depends upon the bond-dissociation energy of the ketone's α substituents. Typically the more α substituted a ketone is, the more likely the reaction will yield products in this way. [5] [6]
A Knoevenagel condensation is a nucleophilic addition of an active hydrogen compound to a carbonyl group followed by a dehydration reaction in which a molecule of water is eliminated (hence condensation). The product is often an α,β-unsaturated ketone (a conjugated enone). General Knoevenagel layout