Ads
related to: pytel mechanics of materials
Search results
Results From The WOW.Com Content Network
Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure or ductile failure .
Foundations of Materials Science and Engineering, 4th edition. McGraw-Hill, 2006. ISBN 0-07-125690-3. Hibbeler, R.C. Statics and Mechanics of Materials, SI Edition. Prentice-Hall, 2004. ISBN 0-13-129011-8. Lebedev, Leonid P. and Michael J. Cloud. Approximating Perfection: A Mathematician's Journey into the World of Mechanics. Princeton ...
Poisson's ratio defines how a material expands (or contracts) transversely when being compressed longitudinally. While most natural materials have a positive Poisson's ratio (coinciding with our intuitive idea that by compressing a material, it must expand in the orthogonal direction), a family of extreme materials known as auxetic materials can exhibit Poisson's ratios below zero.
Compression of solids has many implications in materials science, physics and structural engineering, for compression yields noticeable amounts of stress and tension. By inducing compression, mechanical properties such as compressive strength or modulus of elasticity , can be measured.
In amorphous materials such as polymers, amorphous ceramics (glass), and amorphous metals, the lack of long range order leads to yielding via mechanisms such as brittle fracture, crazing, and shear band formation. In these systems, strengthening mechanisms do not involve dislocations, but rather consist of modifications to the chemical ...
In continuum mechanics, Lamé parameters (also called the Lamé coefficients, Lamé constants or Lamé moduli) are two material-dependent quantities denoted by λ and μ that arise in strain-stress relationships. [1] In general, λ and μ are individually referred to as Lamé's first parameter and Lamé's second parameter, respectively. Other ...
Solid mechanics (also known as mechanics of solids) is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and other external or internal agents.
In addition to being used to model physical materials, hyperelastic materials are also used as fictitious media, e.g. in the third medium contact method. Ronald Rivlin and Melvin Mooney developed the first hyperelastic models, the Neo-Hookean and Mooney–Rivlin solids. Many other hyperelastic models have since been developed.