When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    The transpose of an upper triangular matrix is a lower triangular matrix and vice versa. A matrix which is both symmetric and triangular is diagonal. In a similar vein, a matrix which is both normal (meaning A * A = AA *, where A * is the conjugate transpose) and triangular is also diagonal. This can be seen by looking at the diagonal entries ...

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The product sometimes includes a permutation matrix as well.

  4. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Related: the LUP decomposition is =, where L is lower triangular, U is upper triangular, and P is a permutation matrix. Existence: An LUP decomposition exists for any square matrix A . When P is an identity matrix , the LUP decomposition reduces to the LU decomposition.

  6. Pascal matrix - Wikipedia

    en.wikipedia.org/wiki/Pascal_matrix

    In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix, an upper-triangular matrix, or a symmetric matrix. For example, the 5 × ...

  7. Block LU decomposition - Wikipedia

    en.wikipedia.org/wiki/Block_LU_decomposition

    In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.

  8. Toeplitz matrix - Wikipedia

    en.wikipedia.org/wiki/Toeplitz_matrix

    In linear algebra, a Toeplitz matrix or diagonal-constant matrix, ... where is the lower triangular part of . The inverse of a nonsingular symmetric Toeplitz matrix ...

  9. Incomplete Cholesky factorization - Wikipedia

    en.wikipedia.org/wiki/Incomplete_Cholesky...

    The Cholesky factorization of a positive definite matrix A is A = LL* where L is a lower triangular matrix. An incomplete Cholesky factorization is given by a sparse lower triangular matrix K that is in some sense close to L. The corresponding preconditioner is KK*.