Search results
Results From The WOW.Com Content Network
The transpose of an upper triangular matrix is a lower triangular matrix and vice versa. A matrix which is both symmetric and triangular is diagonal. In a similar vein, a matrix which is both normal (meaning A * A = AA *, where A * is the conjugate transpose) and triangular is also diagonal. This can be seen by looking at the diagonal entries ...
In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The product sometimes includes a permutation matrix as well.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
Related: the LUP decomposition is =, where L is lower triangular, U is upper triangular, and P is a permutation matrix. Existence: An LUP decomposition exists for any square matrix A . When P is an identity matrix , the LUP decomposition reduces to the LU decomposition.
In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix, an upper-triangular matrix, or a symmetric matrix. For example, the 5 × ...
In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.
In linear algebra, a Toeplitz matrix or diagonal-constant matrix, ... where is the lower triangular part of . The inverse of a nonsingular symmetric Toeplitz matrix ...
The Cholesky factorization of a positive definite matrix A is A = LL* where L is a lower triangular matrix. An incomplete Cholesky factorization is given by a sparse lower triangular matrix K that is in some sense close to L. The corresponding preconditioner is KK*.