Search results
Results From The WOW.Com Content Network
Given a function f with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of f if y ≥ f (x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is optimal, and thus cannot be further reduced without invalidating the inequality.
Note: x inputs are from 0-100 and y inputs are from 0-100; This template also takes a variety of other parameters: |color-#= The template can take a color input for each do that is color-dot number (The default color is red) (overrides color-even and color-odd) |legend-color= This template can take a legend input to add to the legend.
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
A logarithmic chart allows only positive values to be plotted. A square root scale chart cannot show negative values. x: the x-values as a comma-separated list, for dates and time see remark in xType and yType; y or y1, y2, …: the y-values for one or several data series, respectively. For pie charts y2 denotes the radius of the corresponding ...
A subset S of a metric space (M, d) is bounded if there exists r > 0 such that for all s and t in S, we have d(s, t) < r. The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent.
These homeomorphisms are also known as (coordinate) charts. The boundary of the upper half-plane is the x-axis. A point on the surface mapped via a chart to the x-axis is termed a boundary point. The collection of such points is known as the boundary of the surface which is necessarily a one-manifold, that is, the union of closed curves.
Each set has a supremum (infimum), if it is bounded from above (below). Proof: Without loss of generality one can look at a set A ⊂ R {\displaystyle A\subset \mathbb {R} } that has an upper bound. One can now construct a sequence ( I n ) n ∈ N {\displaystyle (I_{n})_{n\in \mathbb {N} }} of nested intervals I n = [ a n , b n ] {\displaystyle ...
A -bounded class of graphs is polynomially -bounded if it has a -binding function () that grows at most polynomially as a function of . As every n {\displaystyle n} -vertex graph G {\displaystyle G} contains an independent set with cardinality at least n / χ ( G ) {\displaystyle n/\chi (G)} , all polynomially χ {\displaystyle \chi } -bounded ...