Search results
Results From The WOW.Com Content Network
Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common.
Recent advances in signal processing techniques have made the use of pulse profiling or shaping more common. By shaping the pulse envelope before it is applied to the transmitting device, say to a cosine law or a trapezoid, the bandwidth can be limited at source, with less reliance on filtering.
Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem (i.e. ground clutter, jamming, etc.). Through careful application of STAP, it ...
Signal processing is employed in radar systems to reduce the radar interference effects. Signal processing techniques include moving target indication , Pulse-Doppler signal processing , moving target detection processors, correlation with secondary surveillance radar targets, space-time adaptive processing , and track-before-detect .
Pulse-Doppler signal processing integrates all of the energy from all of the individual reflected pulses that enter the filter. This means a pulse-Doppler signal processing system with 1024 elements provides 30.103 dB of improvement due to the type of signal processing that must be used with pulse-Doppler radar. The energy of all of the ...
Modern radars generally perform all of these MTI techniques as part of a wider suite of signal processing being carried out by digital signal processors. MTI may be specialized in terms of the type of clutter and environment: airborne MTI ( AMTI ), ground MTI ( GMTI ), etc., or may be combined mode: stationary and moving target indication ( SMTI ).
Signal processing of the successive recorded radar echoes allows the combining of the recordings from these multiple antenna positions. This process forms the synthetic antenna aperture and allows the creation of higher-resolution images than would otherwise be possible with a given physical antenna.
Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.