Ads
related to: second theorem of graph theory practice questions worksheet
Search results
Results From The WOW.Com Content Network
A closely related result, Wagner's theorem, characterizes the planar graphs by their minors in terms of the same two forbidden graphs and ,. Every Kuratowski subgraph is a special case of a minor of the same type, and while the reverse is not true, it is not difficult to find a Kuratowski subgraph (of one type or the other) from one of these ...
The theorem was discovered by Julius Petersen, a Danish mathematician. It is one of the first results ever discovered in the field of graph theory. The theorem appears first in the 1891 article "Die Theorie der regulären graphs". To prove the theorem, Petersen's fundamental idea was to 'colour' the edges of a trail or a path alternatively red ...
Pages in category "Theorems in graph theory" The following 54 pages are in this category, out of 54 total. This list may not reflect recent changes. 0–9.
Since such graphs have a unique embedding (up to flipping and the choice of the external face), the next bigger graph, if still planar, must be a refinement of the former graph. This allows to reduce the planarity test to just testing for each step whether the next added edge has both ends in the external face of the current embedding.
Many problems and theorems in graph theory have to do with various ways of coloring graphs. Typically, one is interested in coloring a graph so that no two adjacent vertices have the same color, or with other similar restrictions.
In the monadic second-order logic of graphs, the variables represent objects of up to four types: vertices, edges, sets of vertices, and sets of edges. There are two main variations of monadic second-order graph logic: MSO 1 in which only vertex and vertex set variables are allowed, and MSO 2 in which all four types of variables are allowed ...
A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square. In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian.
The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list. The presence of the desired subgraph is then often used to prove a coloring result. [1] Most commonly, discharging is applied to planar graphs. Initially, a charge is assigned to each face and each vertex of the graph. The ...