Search results
Results From The WOW.Com Content Network
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. Despite differences in their approaches, these derivations share a common topic—proving the orthogonality of the ...
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method [1] for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. The intent of this article is to document the important steps in these derivations.
In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.
Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...
Typical examples involve using non-linear iterative methods, e.g., the conjugate gradient method, as a part of the preconditioner construction. Such preconditioners may be practically very efficient, however, their behavior is hard to predict theoretically.
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is a matrix-free method for finding the largest (or smallest) eigenvalues and the corresponding eigenvectors of a symmetric generalized eigenvalue problem
In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations A x = b . {\displaystyle Ax=b.\,} Unlike the conjugate gradient method , this algorithm does not require the matrix A {\displaystyle A} to be self-adjoint , but instead one needs to perform ...
As with the conjugate gradient method, biconjugate gradient method, and similar iterative methods for solving systems of linear equations, the CGS method can be used to find solutions to multi-variable optimisation problems, such as power-flow analysis, hyperparameter optimisation, and facial recognition. [8]